Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int Immunopharmacol ; 103: 108463, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1587490

ABSTRACT

Therapeutics that impair the innate immune responses of the liver during the inflammatory cytokine storm like that occurring in COVID-19 are greatly needed. Much interest is currently directed toward Janus kinase (JAK) inhibitors as potential candidates to mitigate this life-threatening complication. Accordingly, this study investigated the influence of the novel JAK inhibitor ruxolitinib (RXB) on concanavalin A (Con A)-induced hepatitis and systemic hyperinflammation in mice to simulate the context occurring in COVID-19 patients. Mice were orally treated with RXB (75 and 150 mg/kg) 2 h prior to the intravenous administration of Con A (20 mg/kg) for a period of 12 h. The results showed that RXB pretreatments were efficient in abrogating Con A-instigated hepatocellular injury (ALT, AST, LDH), necrosis (histopathology), apoptosis (cleaved caspase-3) and nuclear proliferation due to damage (PCNA). The protective mechanism of RXB were attributed to i) prevention of Con A-enhanced hepatic production and systemic release of the proinflammatory cytokines TNF-α, IFN-γ and IL-17A, which coincided with decreasing infiltration of immune cells (monocytes, neutrophils), ii) reducing Con A-induced hepatic overexpression of IL-1ß and CD98 alongside NF-κB activation, and iii) lessening Con A-induced consumption of GSH and GSH peroxidase and generation of oxidative stress products (MDA, 4-HNE, NOx) in the liver. In summary, JAK inhibition by RXB led to eminent protection of the liver against Con A-deleterious manifestations primarily via curbing the inflammatory cytokine storm driven by TNF-α, IFN-γ and IL-17A.


Subject(s)
Concanavalin A/toxicity , Cytokine Release Syndrome/chemically induced , Cytokine Release Syndrome/drug therapy , Nitriles/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Aldehydes/metabolism , Animals , Chemical and Drug Induced Liver Injury , Dose-Response Relationship, Drug , Inflammation/chemically induced , Liver/drug effects , Liver/metabolism , Male , Malondialdehyde/metabolism , Mice , Mice, Inbred BALB C , Nitrates/metabolism , Nitriles/administration & dosage , Nitrites/metabolism , Oxidative Stress , Peroxidase/metabolism , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL